Compare commits

...

27 commits

Author SHA1 Message Date
Julien Oculi 871dbdd5f1 doc: improve config.h constants description 2025-07-25 15:40:19 +02:00
Julien Oculi 51c2a63039 doc: fix typos 2025-07-25 15:29:33 +02:00
Julien Oculi 403f9181e3 feat!: WIP convert all motor controls to stack based task pool
This commit close this branch with WIP implementation of a stack based
task pool system to handle long running action (motor move) of
the kissStepper lib (that need a long `while`). The goal was to
allow handling of incomming serrial messages and motion cancellation
during stepper control loop.
2025-07-25 14:59:37 +02:00
Julien Oculi cbb17e279f feat: implement getter for turret home zero and position 2025-06-12 16:54:28 +02:00
Julien Oculi e1207b1122 refactor: better helper name for clarity 2025-06-12 16:15:38 +02:00
Julien Oculi 397eed8080 feat: prevent full rotation to preserve mecanic 2025-06-12 16:05:30 +02:00
Julien Oculi 5f0235eec7 refactor!: remove zero offset magic number 2025-06-12 09:46:52 +02:00
Julien Oculi 9a57d8a827 doc: improve magic numbers description 2025-06-12 09:39:27 +02:00
Julien Oculi 9385024914 fix: update step ratio values 2025-06-11 15:15:06 +02:00
Julien Oculi 10b2bd7cf6 feat: add a destructor for Turret to diasble steppers and lasers 2025-06-11 14:36:01 +02:00
Julien Oculi b78d3dc10d chore: prevent multiple includes for maths.h 2025-06-11 14:05:36 +02:00
Julien Oculi ae29743a5a doc: update and improve readme 2025-06-10 23:00:45 +02:00
Julien Oculi 633d9006fb style: fix missing formatting 2025-06-10 22:44:51 +02:00
Julien Oculi 0dcbe05688 feat!: update sketch to use new API 2025-06-10 22:43:21 +02:00
Julien Oculi ff568306d8 refactor!: use some structs to simplify and reduce code 2025-06-10 17:08:30 +02:00
Julien Oculi cf88273869 refactor: fix various lsp erros and warnings 2025-06-10 16:08:10 +02:00
Julien Oculi 3ab35f51f7 chore: configure clangd lsp for arduino 2025-06-10 15:54:55 +02:00
Julien Oculi 4e2ea69a81 doc: update README instructions 2025-06-10 11:37:04 +02:00
Julien Oculi 82ea36bda2 feat!: remove magic numbers for step ratios and offsets 2025-06-10 11:35:26 +02:00
Julien Oculi 4f79010aa2 fix: use long for position to prevent int overflow 2025-06-10 11:08:41 +02:00
Julien Oculi 52ccdaefb3 feat!: rewrite setup to test new turret mecha 2025-06-05 16:12:29 +02:00
Julien Oculi 547d51dfc7 feat!: update turret axis geometric model 2025-06-05 16:01:52 +02:00
Julien Oculi 3e745059a2 feat!: update angle to steps conversion factors 2025-06-05 15:59:14 +02:00
Julien Oculi 1831dfe0ab feat: remove old roll correction 2025-06-05 15:57:10 +02:00
Julien Oculi 91da5f2793 feat!: update turret home magic numbers 2025-06-05 15:53:35 +02:00
Julien Oculi aa300d5e0c feat!: update pin config interverting x and y 2025-06-05 15:51:39 +02:00
Julien Oculi 13902841be doc: update `README 2025-06-05 15:48:54 +02:00
12 changed files with 993 additions and 278 deletions

1
.gitignore vendored Normal file
View file

@ -0,0 +1 @@
.clangd

View file

@ -3,9 +3,12 @@
Code de la tourelle de pointage laser du projet bouchons EDF. Code de la tourelle de pointage laser du projet bouchons EDF.
> [!WARNING] > [!WARNING]
> Code de debuggage uniquement. > Code de débogage uniquement.
# Usage > [!IMPORTANT]
> Nouvelle mécanique, les axes H/x et V/y sont découplés.
## Usage
Compile through Arduino IDE or equivalent. Compile through Arduino IDE or equivalent.
@ -13,6 +16,51 @@ Compile through Arduino IDE or equivalent.
> Add [kissStepper](https://github.com/risitt/kissStepper) to your project > Add [kissStepper](https://github.com/risitt/kissStepper) to your project
> librairies. > librairies.
## Conventions
- **x** is the horizontal axis centered at 0 and going from left (min value) to
right (max value).
- **y** is the vertical axis centered at 0 and going from bottom (min value) to
top (max value).
- **z** is the distance between the turret and the target.
```mermaid
xychart-beta
title "Turret coordinate system"
x-axis "X axis [m]" -3 --> 3
y-axis "Y axis [m]" -3 --> 3
bar [-4]
```
## Development
Required dependencies if not using
[Arduino IDE](https://www.arduino.cc/en/software/):
- [Arduino CLI](https://docs.arduino.cc/arduino-cli/):
- Install:
```sh
# linux
curl -fsSL https://raw.githubusercontent.com/arduino/arduino-cli/master/install.sh | sh
# macos
brew update
brew install arduino-cli
# windows
winget install --id=ArduinoSA.CLI -e
```
- Configure:
```sh
arduino-cli config init
arduino-cli core update-index
arduino-cli core install arduino:avr
```
If you use `clangd` as lsp run `python ./generate_clangd.py` to load arduino
config and libraries.
## Contributing ## Contributing
Before `git commit`, run `git clang-format` to format stagged files. Before `git commit`, run `git clang-format --staged` to format staged files and
then `git add` to commit formatting.

View file

@ -1,6 +1,8 @@
#ifndef CONFIG_H #ifndef CONFIG_H
#define CONFIG_H #define CONFIG_H
#include "math.h"
#define BAUDRATE (9600) #define BAUDRATE (9600)
// Pins // Pins
@ -14,16 +16,33 @@
#define PIN_PD2 (2) #define PIN_PD2 (2)
#define PIN_MOSI (11) #define PIN_MOSI (11)
#define PIN_X_PULSE (PIN_PB0) #define PIN_Y_PULSE (PIN_PB0)
#define PIN_X_ENABLE (PIN_PD6) #define PIN_Y_ENABLE (PIN_PD6)
#define PIN_X_DIRECTION (PIN_PD7) #define PIN_Y_DIRECTION (PIN_PD7)
#define PIN_X_HOME (PIN_PD3) #define PIN_Y_HOME (PIN_PD3)
#define PIN_Y_PULSE (PIN_PB2) #define PIN_X_PULSE (PIN_PB2)
#define PIN_Y_ENABLE (PIN_PB1) #define PIN_X_ENABLE (PIN_PB1)
#define PIN_Y_DIRECTION (PIN_MOSI) #define PIN_X_DIRECTION (PIN_MOSI)
#define PIN_Y_HOME (PIN_PD4) #define PIN_X_HOME (PIN_PD4)
#define PIN_LASER (PIN_PD2) #define PIN_LASER (PIN_PD2)
// Stepper ratio [step/rad]
#define STEP_RATIO_X (6432 / M_PI)
#define STEP_RATIO_Y (6432 / M_PI)
// Offset between home and zero [step]
#define ZERO_OFFSET_X (0)
#define ZERO_OFFSET_Y (2500)
// Offset between turret and lidar [cm]
// Distance between the lidar optical center and the vertical laser (should be 0
// unless mechanical constraints)
#define OFFSET_X (0)
// Distance between the lidar optical center and the horizontal laser
#define OFFSET_Y (21)
// Distance between the surface and the turret motors axis
#define OFFSET_Z (166)
#endif #endif

48
generate_clangd.py Normal file
View file

@ -0,0 +1,48 @@
#!/usr/bin/env python3
import os
import platform
import yaml
def write_clangd_file(flags):
clangd_config = {
"CompileFlags": {
"Add": flags
}
}
with open(".clangd", "w") as f:
yaml.dump(clangd_config, f, default_flow_style=False)
def main():
arduino_base_path = os.path.expanduser("~/AppData/Local") if platform.system() == "Windows" else os.path.expanduser('~')
flags = [
"-x", "c++",
"-std=gnu++11",
"-fpermissive",
"-fno-exceptions",
"-ffunction-sections",
"-fdata-sections",
"-fno-threadsafe-statics",
"-Wno-error=narrowing",
"-flto",
"-E",
"-CC",
"-D__AVR__",
"-D__AVR_ATmega328P__",
"-DF_CPU=16000000L",
"-DARDUINO=10607",
"-DARDUINO_AVR_UNO",
"-DARDUINO_ARCH_AVR",
"-I./include",
f"-I{arduino_base_path}/Arduino15/packages/arduino/hardware/avr/1.8.6/cores/arduino",
f"-I{arduino_base_path}/Arduino15/packages/arduino/hardware/avr/1.8.6/variants/standard",
f"-I{arduino_base_path}/Arduino15/packages/arduino/tools/avr-gcc/7.3.0-atmel3.6.1-arduino7/avr/include",
f"-I{arduino_base_path}/Arduino15/packages/arduino/tools/avr-gcc/7.3.0-atmel3.6.1-arduino7/lib/gcc/avr/7.3.0/include",
]
write_clangd_file(flags)
if __name__ == "__main__":
main()

312
include/kissStepper.h Normal file
View file

@ -0,0 +1,312 @@
/*
kissStepper - a lightweight library for the Easy Driver, Big Easy Driver, Allegro stepper motor drivers and others that use a Step/Dir interface
Written by Rylee Isitt. September 21, 2015
License: GNU Lesser General Public License (LGPL) V2.1
Despite the existence of several excellent libraries for driving stepper motors, I created this one to fulfill the following needs:
- Simplicity
- Handling of enable, step, and dir pins
- Based around an external loop
- Approximately linear acceleration using a fast algorithm
- High step frequency (or reasonably so, given the overhead involved)
- Use AVR/ARM libraries and port access to increase performance while keeping the API Arduino-friendly
- Teensy (Teensyduino) compatibility
Acceleration approximation math is based on Aryeh Eiderman's "Real Time Stepper Motor Linear Ramping Just by Addition and Multiplication", available at http://hwml.com/LeibRamp.pdf
*/
#ifndef kissStepper_H
#define kissStepper_H
#include <Arduino.h>
// determine port register size
#if defined(__AVR__) || defined(__avr__)
typedef uint8_t regint;
#elif defined(TEENSYDUINO)
#if defined(__AVR_ATmega32U4__) || defined(__AVR_AT90USB1286__) || defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MKL26Z64__) || defined(__MK64FX512__) || defined(__MK66FX1M0__)
typedef uint8_t regint;
#else
typedef uint32_t regint;
#endif
#else
typedef uint32_t regint;
#endif
// the order of enums allows some simple tests:
// if > STATE_STARTING, motor is in motion
// if > STATE_RUN, motor is accelerating or decelerating
enum kissState_t: uint8_t
{
STATE_STOPPED = 0,
STATE_STARTING = 1,
STATE_RUN = 2,
STATE_ACCEL = 3,
STATE_DECEL = 4
};
// ----------------------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------------------
// kissStepper without acceleration
// ----------------------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------------------
class kissStepperNoAccel
{
public:
kissStepperNoAccel(uint8_t PIN_DIR, uint8_t PIN_STEP, uint8_t PIN_ENABLE = 255, bool invertDir = false);
kissStepperNoAccel(uint8_t PIN_DIR, uint8_t PIN_STEP, bool invertDir = false);
~kissStepperNoAccel(void) {};
bool prepareMove(int32_t target);
kissState_t move(void);
void stop(void);
uint16_t getCurSpeed(void)
{
if (m_kissState == STATE_RUN)
return m_maxSpeed;
else
return 0;
}
kissState_t getState(void)
{
return m_kissState;
}
int32_t getPos(void)
{
if (m_forwards)
return m_pos + m_distMoved;
else
return m_pos - m_distMoved;
}
bool isEnabled(void)
{
return m_enabled;
}
bool isMovingForwards(void)
{
return m_forwards;
}
void begin(void);
void enable(void);
void disable(void);
void setPos(int32_t pos)
{
if (m_kissState == STATE_STOPPED)
m_pos = constrain(pos, m_reverseLimit, m_forwardLimit);
}
int32_t getTarget(void)
{
if (m_kissState == STATE_STOPPED)
return m_pos;
else if (m_forwards)
return m_pos + m_distTotal;
else
return m_pos - m_distTotal;
}
uint32_t getDistRemaining(void)
{
return m_distTotal - m_distMoved;
}
void setForwardLimit(int32_t forwardLimit)
{
m_forwardLimit = forwardLimit;
}
void setReverseLimit(int32_t reverseLimit)
{
m_reverseLimit = reverseLimit;
}
int32_t getForwardLimit(void)
{
return m_forwardLimit;
}
int32_t getReverseLimit(void)
{
return m_reverseLimit;
}
void setMaxSpeed(uint16_t maxSpeed)
{
if (m_kissState == STATE_STOPPED) m_maxSpeed = maxSpeed;
}
uint16_t getMaxSpeed(void)
{
return m_maxSpeed;
}
protected:
void setDir(bool forwards)
{
m_forwards = forwards;
digitalWrite(PIN_DIR, forwards == m_invertDir);
}
void updatePos(void)
{
if (m_forwards)
m_pos += m_distMoved;
else
m_pos -= m_distMoved;
m_distMoved = 0;
}
static const uint32_t ONE_SECOND = 1000000UL;
static const uint8_t PULSE_WIDTH_US = 2; // desired width of step pulse (high) in us
static const int32_t DEFAULT_FORWARD_LIMIT = 2147483647L;
static const int32_t DEFAULT_REVERSE_LIMIT = -2147483648L;
static const uint16_t DEFAULT_SPEED = 1600;
static const uint16_t INTERVAL_CORRECTION_INCREMENT = 255;
int32_t m_forwardLimit;
int32_t m_reverseLimit;
uint16_t m_maxSpeed;
const uint8_t PIN_DIR;
const uint8_t PIN_STEP;
const uint8_t PIN_ENABLE;
kissState_t m_kissState;
uint32_t m_distTotal, m_distMoved;
bool m_forwards;
int32_t m_pos;
const regint m_stepBit;
regint volatile * const m_stepOut;
uint32_t m_stepIntervalWhole;
uint16_t m_stepIntervalRemainder;
uint16_t m_stepIntervalCorrectionCounter;
bool m_enabled;
uint32_t m_lastStepTime;
bool m_invertDir;
bool m_init;
};
// ----------------------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------------------
// kissStepper WITH acceleration
// ----------------------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------------------
// ----------------------------------------------------------------------------------------------------
class kissStepper: public kissStepperNoAccel
{
public:
kissStepper(uint8_t PIN_DIR, uint8_t PIN_STEP, uint8_t PIN_ENABLE = 255, bool invertDir = false);
kissStepper(uint8_t PIN_DIR, uint8_t PIN_STEP, bool invertDir = false);
~kissStepper(void) {};
bool prepareMove(int32_t target);
kissState_t move(void);
void stop(void);
uint16_t getCurSpeed(void)
{
if (m_kissState == STATE_RUN)
return m_maxSpeed;
else if (m_kissState > STATE_STARTING)
{
uint32_t curSpeed = ONE_SECOND / m_stepIntervalWhole;
if (curSpeed > m_maxSpeed) curSpeed = m_maxSpeed;
return curSpeed;
}
else
return 0;
}
void decelerate(void);
uint32_t calcMaxAccelDist(void)
{
if (m_accel > 0)
return ((uint32_t)m_maxSpeed * m_maxSpeed) / (2UL * m_accel);
else
return 0;
}
uint32_t getAccelDist(void)
{
return m_distAccel;
}
uint32_t getRunDist(void)
{
return m_distRun - m_distAccel;
}
uint32_t getDecelDist(void)
{
return m_distTotal - m_distRun;
}
void setAccel(uint16_t accel)
{
if (m_kissState == STATE_STOPPED) m_accel = accel;
}
uint16_t getAccel(void)
{
return m_accel;
}
uint16_t getTopSpeed(void);
protected:
static const uint16_t DEFAULT_ACCEL = 1600;
uint32_t m_distAccel, m_distRun;
uint32_t m_topSpeedStepInterval;
uint32_t m_minSpeedStepInterval;
float m_stepInterval;
float m_constMult;
uint16_t m_accel;
private:
/*
----------------------------------------------------------------------------------------------------
To strike a balance between accuracy and performance, this library uses a set of approximations
for calculating stepInterval when accelerating/decelerating. Although this does use floating point
math, it is a drastic improvement over exact calculations and better than anything else I've tried.
There is probably room for further improvement (fixed point or integer math?) but this is good enough.
exact:
stepInterval = ONE_SECOND / newSpeed
curSpeed = ONE_SECOND / stepInterval
newSpeed = sqrt(curSpeed^2 + 2a)
stepInterval = ONE_SECOND / sqrt(curSpeed^2 + 2a)
approximations:
constMult = accel / (ONE_SECOND * ONE_SECOND)
q = constMult*stepInterval*stepInterval
set q to negative if accelerating
good precision, fast: stepInterval *= 1.0 + q
better precision, slower: stepInterval *= 1.0 + q + q*q
best precision, slowest: stepInterval *= 1.0 + q + 1.5*q*q
----------------------------------------------------------------------------------------------------
*/
float accelStep(float stepInterval, float constMult)
{
float newStepInterval;
float q = -constMult*stepInterval*stepInterval;
newStepInterval = stepInterval * (1.0 + q);
// newStepInterval = stepInterval * (1.0 + q + q*q); // better accuracy
// newStepInterval = stepInterval * (1.0 + q + 1.5*q*q); // best accuracy
if (newStepInterval < m_topSpeedStepInterval) newStepInterval = m_topSpeedStepInterval;
return newStepInterval;
}
float decelStep(float stepInterval, float constMult)
{
float newStepInterval;
float q = constMult*stepInterval*stepInterval;
newStepInterval = stepInterval * (1.0 + q);
// newStepInterval = stepInterval * (1.0 + q + q*q); // better accuracy
// newStepInterval = stepInterval * (1.0 + q + 1.5*q*q); // best accuracy
if (newStepInterval > m_minSpeedStepInterval) newStepInterval = m_minSpeedStepInterval;
return newStepInterval;
}
};
#endif

View file

@ -1,48 +1,46 @@
#include "math.h" #include "math.h"
#include "turret.h"
// rollH atan((22.5 - 18.5) / 236) ~0.97°
// rollV ~1°
double degToRad(double deg) { return deg * M_PI / 180.0; } double degToRad(double deg) { return deg * M_PI / 180.0; }
double radToDeg(double rad) { return rad * 180.0 / M_PI; } double radToDeg(double rad) { return rad * 180.0 / M_PI; }
void angleToStep(long &stepX, long &stepY, double angleX, double angleY) { void radToStep(Turret::StepRatio stepRatio, vec2<double> angle,
// TODO remove magic numbers vec2<long> &step) {
double stepRatioX = M_PI / ((51.2 / 15.0) * (100.0 * 64.0)); step.x = angle.x * stepRatio.x;
double stepRatioY = M_PI / ((48.0 / 15.0) * (100.0 * 64.0)); step.y = angle.y * stepRatio.y;
stepX = angleX / stepRatioX;
stepY = angleY / stepRatioY;
} }
double rollCorrection(double x, double max, double width) { void stepToRad(Turret::StepRatio stepRatio, vec2<long> step,
double correction = max * (1.0 - cos((10.0 * x) / (width * M_PI))) / 2.0; vec2<double> &angle) {
return x - correction; angle.x = step.x / stepRatio.x;
angle.y = step.y / stepRatio.y;
} }
void cartesianToPolar(long &stepX, long &stepY, double zeroX, double zeroY, void cartesianToPolar(Turret::StepRatio stepRatio, Turret::Offset offset,
double x, double y, double z) { vec2<long> zero, vec3<double> position,
// TODO remove magic numbers vec2<long> &step) {
double distance = 166.0; // turret to screen // x = -x; // natural axis direction
double offsetY = 21.0; // laser to stand position.y = -position.y; // natural axis direction
double offsetX = 0.0; // unused double dX = position.x + offset.x;
double dY = position.y + offset.y;
double dZ = position.z + offset.z;
x = -x; // natural axis direction vec2<double> angle(atan2(dZ, dY) - M_PI / 2, atan2(dZ, dX) - M_PI / 2);
double dX = x + offsetX;
double dY = rollCorrection(y + offsetY, 0.2, 400.0);
double dZ = z + distance;
double roll = atan2(4.0, 236.0); radToStep(stepRatio, angle, step);
double rollY = dX * tan(roll); }
double rollX = dY * tan(roll);
void polarToCartesian(Turret::StepRatio stepRatio, Turret::Offset offset,
double dXr = dX + rollX; vec3<long> current, vec2<long> zero, vec2<long> step,
double dYr = dY + rollY; vec3<double> &position) {
double rho = sqrt(pow(dXr, 2.0) + pow(dYr, 2.0) + pow(dZ, 2.0)); vec2<double> angle;
double angleY = M_PI / 2.0 - acos(dYr / rho); stepToRad(stepRatio, step, angle);
double angleX = atan2(dXr, dZ);
vec2<double> dXYZ(tan(angle.x) * current.z, tan(angle.y) * current.z);
angleToStep(stepX, stepY, angleX, angleY);
position.x = dXYZ.x - offset.x;
position.y = -(dXYZ.y - offset.y); // natural axis direction
position.z = current.z - offset.z;
} }

19
maths.h
View file

@ -1,5 +1,18 @@
#ifndef MATHS_H
#define MATHS_H
#include "turret.h"
double degToRad(double deg); double degToRad(double deg);
double radToDeg(double rad); double radToDeg(double rad);
void angleToStep(long &stepX, long &stepY, double angleX, double angleY); void radToStep(Turret::StepRatio stepRatio, vec2<double> angle,
void cartesianToPolar(long &stepX, long &stepY, double zeroX, double zeroY, vec2<long> &step);
double x, double y, double z); void stepToRad(Turret::StepRatio stepRatio, vec2<long> step,
vec2<double> &angle);
void cartesianToPolar(Turret::StepRatio stepRatio, Turret::Offset offset,
vec2<long> zero, vec3<double> position, vec2<long> &step);
void polarToCartesian(Turret::StepRatio stepRatio, Turret::Offset offset,
vec3<long> current, vec2<long> zero, vec2<long> step,
vec3<double> &position);
#endif

30
serial_stream.cpp Normal file
View file

@ -0,0 +1,30 @@
#include "serial_stream.h"
SerialStream &SerialStream::connect(HardwareSerial &serial) {
_serial = &serial;
return *this;
}
SerialStream &SerialStream::disconnect() {
_serial = nullptr;
return *this;
}
SerialStream &SerialStream::bind(Turret &turret) {
_turret = &turret;
return *this;
}
SerialStream &SerialStream::unbind() {
_turret = nullptr;
return *this;
}
SerialStream &SerialStream::loop() {
if (_serial == nullptr) return *this;
if (_serial->available() == 0) return *this;
_serial->read();
return *this;
}

28
serial_stream.h Normal file
View file

@ -0,0 +1,28 @@
#ifndef SERIAL_STREAM_H
#define SERIAL_STREAM_H
#include "HardwareSerial.h"
#include "turret.h"
class SerialStream {
public:
SerialStream();
~SerialStream();
SerialStream &connect(HardwareSerial &serial);
SerialStream &disconnect();
SerialStream &bind(Turret &turret);
SerialStream &unbind();
SerialStream &loop();
private:
// TEMP to keep this in mind
int _internal_buffer;
HardwareSerial *_serial = nullptr;
Turret *_turret = nullptr;
};
#endif

View file

@ -1,218 +1,432 @@
#include "turret.h" #include "turret.h"
#include "config.h" #include "Arduino.h"
#include "math.h"
#include "maths.h" #include "maths.h"
#include <kissStepper.h> #include <kissStepper.h>
Turret::Turret(int pin_x_direction, int pin_x_pulse, int pin_x_enable, Turret::Turret(StepRatio step_ratio, Offset offset, ZeroOffset zero_offset,
int pin_x_home, int pin_y_direction, int pin_y_pulse, PinMap pin_map_x, PinMap pin_map_y)
int pin_y_enable, int pin_y_home, int pin_laser) : _stepper(kissStepper(static_cast<uint8_t>(pin_map_x.direction),
: _stepperX(pin_x_direction, pin_x_pulse, pin_x_enable), static_cast<uint8_t>(pin_map_x.pulse),
_stepperY(pin_y_direction, pin_y_pulse, pin_y_enable) { static_cast<uint8_t>(pin_map_x.enable)),
kissStepper(static_cast<uint8_t>(pin_map_y.direction),
static_cast<uint8_t>(pin_map_y.pulse),
static_cast<uint8_t>(pin_map_y.enable))) {
_pin_x_direction = pin_x_direction; _pin.x = pin_map_x;
_pin_x_pulse = pin_x_pulse; _pin.y = pin_map_y;
_pin_x_enable = pin_x_enable; _step_ratio = step_ratio;
_offset = offset;
_zero_offset = zero_offset;
}
_pin_y_direction = pin_y_direction; Turret::~Turret() {
_pin_y_pulse = pin_y_pulse; _stepper.x.stop();
_pin_y_enable = pin_y_enable; _stepper.x.disable();
_stepper.y.stop();
_pin_x_home = pin_x_home; _stepper.y.disable();
_pin_y_home = pin_y_home; digitalWrite(_pin.x.laser, LOW);
_pin_laser = pin_laser; digitalWrite(_pin.y.laser, LOW);
} }
Turret &Turret::init() { Turret &Turret::init() {
pinMode(_pin_laser, OUTPUT); pinMode(_pin.x.laser, OUTPUT);
pinMode(_pin.y.laser, OUTPUT);
pinMode(_pin_x_direction, OUTPUT); pinMode(_pin.x.direction, OUTPUT);
pinMode(_pin_x_pulse, OUTPUT); pinMode(_pin.x.pulse, OUTPUT);
pinMode(_pin_x_enable, OUTPUT); pinMode(_pin.x.enable, OUTPUT);
pinMode(_pin_x_home, INPUT_PULLUP); pinMode(_pin.x.home, INPUT_PULLUP);
pinMode(_pin_y_direction, OUTPUT); pinMode(_pin.y.direction, OUTPUT);
pinMode(_pin_y_pulse, OUTPUT); pinMode(_pin.y.pulse, OUTPUT);
pinMode(_pin_y_enable, OUTPUT); pinMode(_pin.y.enable, OUTPUT);
pinMode(_pin_y_home, INPUT_PULLUP); pinMode(_pin.y.home, INPUT_PULLUP);
_stepperX.begin(); _stepper.x.begin();
_stepperY.begin(); _stepper.y.begin();
return *this; return *this;
} }
Turret &Turret::gotoHome() { bool Turret::_enqueue_tick(Turret::TickHandler handler) {
long xStop = 0; size_t next = (_tick_queue_tail + 1) % Turret::TICK_QUEUE_LENGTH;
long yStop = 0; if (next == _tick_queue_head) return false; // queue full
_tick_queue[_tick_queue_tail] = handler;
_tick_queue_tail = next;
return true;
}
_stepperX.prepareMove(-1000000l); bool Turret::_dequeue_tick() {
_stepperY.prepareMove(-1000000l); if (_tick_queue_head == _tick_queue_tail) return false; // queue is empty
_tick_queue_head = (_tick_queue_head + 1) % Turret::TICK_QUEUE_LENGTH;
return true;
}
while (true) { Turret::TickHandler Turret::_current_tick() {
_stepperX.move(); if (_tick_queue_head == _tick_queue_tail) return nullptr;
_stepperY.move(); return _tick_queue[_tick_queue_head];
}
if (xStop == 2 && yStop == 2) { Turret &Turret::wait(long ms, bool blocking) {
_homeX = _stepperX.getPos(); if (blocking) {
_homeY = _stepperY.getPos(); while(_wait_tick());
break; } else {
} _next_tick = &Turret::_wait_tick;
}
}
if (xStop < 2 && digitalRead(_pin_x_home)) { bool Turret::_wait_tick() {
xStop++; if (delay + start >= now) return false;
_stepperX.stop(); return true
} }
if (yStop < 2 && digitalRead(_pin_y_home)) { Turret &Turret::gotoHome(bool blocking) {
yStop++; if (blocking) {
_stepperY.stop(); while(_goto_home_tick());
} } else {
_next_tick = &Turret::_goto_home_tick;
}
return *this;
}
bool Turret::_goto_home_tick() {
_stepper.x.prepareMove(-1000000l);
_stepper.y.prepareMove(-1000000l);
bool xStop = _stepper.x.getState();
bool yStop = _stepper.y.getState();
_stepper.x.move();
_stepper.y.move();
if (xStop && yStop ) {
_home.x = _stepper.x.getPos();
_home.y = _stepper.y.getPos();
return false;
} }
return *this; if (!xStop && digitalRead(_pin.x.home)) {
} _stepper.x.stop();
Turret &Turret::gotoZero() {
// TODO remove magic numbers
_stepperX.prepareMove(_homeX + 9300);
_stepperY.prepareMove(_homeY + 3500);
bool xStop = false;
bool yStop = false;
while (true) {
if (xStop && yStop)
break;
if (!xStop)
xStop = _stepperY.move() == STATE_STOPPED;
if (!yStop)
yStop = _stepperX.move() == STATE_STOPPED;
} }
_zeroX = _stepperX.getPos(); if (!yStop && digitalRead(_pin.y.home)) {
_zeroY = _stepperY.getPos(); _stepper.y.stop();
}
return true;
}
Turret &Turret::gotoZero(bool blocking) {
if (blocking) {
while(_goto_zero_tick());
} else {
_next_tick = &Turret::_goto_zero_tick;
}
return *this; return *this;
} }
Turret &Turret::calibrate() { bool Turret::_goto_zero_tick() {
gotoHome(); _stepper.x.prepareMove(_home.x + _zero_offset.x);
gotoZero(); _stepper.y.prepareMove(_home.y + _zero_offset.y);
bool xStop = _stepper.x.getState();
bool yStop = _stepper.y.getState();
if (xStop && yStop) {
_zero.x = _stepper.x.getPos();
_zero.y = _stepper.y.getPos();
return false;
}
if (!xStop)
xStop = _stepper.y.move() == STATE_STOPPED;
if (!yStop)
yStop = _stepper.x.move() == STATE_STOPPED;
return true;
}
Turret &Turret::calibrate(bool blocking) {
gotoHome(blocking);
gotoZero(blocking);
return *this; return *this;
} }
Turret &Turret::moveTo(double x, double y, double z, Unit unit) { Turret &Turret::moveTo(double x, double y, double z, Unit unit, bool blocking) {
long stepX; vec2<long> step;
long stepY;
if (unit == Unit::MM) { if (unit == Unit::MM) {
cartesianToPolar(stepX, stepY, _zeroX, _zeroY, x / 10.0, y / 10.0, vec3<double> position(x / 10.0, y / 10.0, z / 10.0);
z / 10.0); cartesianToPolar(_step_ratio, _offset, _zero, position, step);
} }
if (unit == Unit::CM) { if (unit == Unit::CM) {
cartesianToPolar(stepX, stepY, _zeroX, _zeroY, x, y, z); vec3<double> position(x, y, z);
cartesianToPolar(_step_ratio, _offset, _zero, position, step);
} }
if (unit == Unit::M) { if (unit == Unit::M) {
cartesianToPolar(stepX, stepY, _zeroX, _zeroY, x * 100.0, y * 100.0, vec3<double> position(x * 100.0, y * 100.0, z * 100.0);
z * 100.0); cartesianToPolar(_step_ratio, _offset, _zero, position, step);
} }
if (unit == Unit::STEP) { if (unit == Unit::STEP) {
stepX = x; step.x = x;
stepY = y; step.y = y;
} }
if (unit == Unit::RAD) { if (unit == Unit::RAD) {
angleToStep(stepX, stepY, x, y); radToStep(_step_ratio, vec2<double>(x, y), step);
} }
if (unit == Unit::DEG) { if (unit == Unit::DEG) {
angleToStep(stepX, stepY, degToRad(x), degToRad(y)); radToStep(_step_ratio, vec2<double>(degToRad(x), degToRad(y)), step);
} }
// TODO min(valueI, -_homeI); long maxDeltaStepX = _step_ratio.x * M_PI_2;
_stepperX.prepareMove(_zeroX + stepX); long maxDeltaStepY = _step_ratio.y * M_PI_2;
_stepperY.prepareMove(_zeroY + stepY);
bool xStop = false; // force move from -90° to 90° avoiding backside,
bool yStop = false; // if move > 180° skip the full turn a start at -90°,
// same in the other direction
long stepX = constrain(step.x % maxDeltaStepX, -(maxDeltaStepX >> 2),
(maxDeltaStepX >> 2));
long stepY = constrain(step.y % maxDeltaStepY, -(maxDeltaStepY >> 2),
(maxDeltaStepY >> 2));
while (true) { if (blocking) {
if (xStop && yStop) while(_move_to_tick());
break; } else {
if (!xStop) _next_tick = &Turret::_move_to_tick;
xStop = _stepperX.move() == STATE_STOPPED;
if (!yStop)
yStop = _stepperY.move() == STATE_STOPPED;
} }
// _stepper.x.prepareMove(_zero.x + stepX);
// _stepper.y.prepareMove(_zero.y + stepY);
_currentX = x; // bool xStop = false;
_currentY = y; // bool yStop = false;
_currentZ = z;
// while (true) {
// if (xStop && yStop)
// break;
// if (!xStop)
// xStop = _stepper.x.move() == STATE_STOPPED;
// if (!yStop)
// yStop = _stepper.y.move() == STATE_STOPPED;
// }
// _current.x = x;
// _current.y = y;
// _current.z = z;
return *this; return *this;
} }
Turret &Turret::moveBy(double x, double y, double z, Unit unit) { bool Turret::_move_to_tick() {
long zeroXStored = _zeroX; stepX;
long zeroYStored = _zeroY; stepY;
_zeroX += _stepperX.getPos(); _stepper.x.prepareMove(_zero.x + stepX);
_zeroY += _stepperY.getPos(); _stepper.y.prepareMove(_zero.y + stepY);
moveTo(x, y, z, unit); bool xStop = _stepper.x.getState() == STATE_STOPPED;
bool yStop = _stepper.y.getState() == STATE_STOPPED;
_zeroX = zeroXStored; if (xStop && yStop) {
_zeroY = zeroYStored; _current.x = x;
_current.y = y;
_current.z = z;
return false;
}
if (!xStop) xStop = _stepper.x.move() == STATE_STOPPED;
if (!yStop) yStop = _stepper.y.move() == STATE_STOPPED;
}
_currentX = x; Turret &Turret::moveBy(double x, double y, double z, Unit unit, bool blocking) {
_currentY = y; long zeroXStored = _zero.x;
_currentZ = z; long zeroYStored = _zero.y;
_zero.x += _stepper.x.getPos();
_zero.y += _stepper.y.getPos();
moveTo(x, y, z, unit, blocking);
_zero.x = zeroXStored;
_zero.y = zeroYStored;
_current.x = x;
_current.y = y;
_current.z = z;
return *this; return *this;
} }
Turret &Turret::moveToX(double x, Unit unit) { Turret &Turret::moveToX(double x, Unit unit, bool blocking) {
return moveTo(x, _currentY, _currentZ, unit); return moveTo(x, _current.y, _current.z, unit, blocking);
} }
Turret &Turret::moveToY(double y, Unit unit) { Turret &Turret::moveToY(double y, Unit unit, bool blocking) {
return moveTo(_currentX, y, _currentZ, unit); return moveTo(_current.x, y, _current.z, unit, blocking);
} }
Turret &Turret::moveToZ(double z, Unit unit) { Turret &Turret::moveToZ(double z, Unit unit, bool blocking) {
return moveTo(_currentX, _currentY, z, unit); return moveTo(_current.x, _current.y, z, unit, blocking);
} }
Turret &Turret::moveByX(double x, Unit unit) { return moveBy(x, 0, 0, unit); } Turret &Turret::moveByX(double x, Unit unit, bool blocking) { return moveBy(x, 0, 0, unit, blocking); }
Turret &Turret::moveByY(double y, Unit unit) { return moveTo(0, y, 0, unit); } Turret &Turret::moveByY(double y, Unit unit, bool blocking) { return moveTo(0, y, 0, unit, blocking); }
Turret &Turret::moveByZ(double z, Unit unit) { return moveTo(0, 0, z, unit); } Turret &Turret::moveByZ(double z, Unit unit, bool blocking) { return moveTo(0, 0, z, unit, blocking); }
Turret &Turret::nextTick() {
TickHandler tick = _current_tick();
if (tick == nullptr) return *this;
if (!(this->*tick)()) _dequeue_tick();
return *this;
}
Turret &Turret::flushTick() {
while (_dequeue_tick());
return *this;
}
bool Turret::hasTick() {
TickHandler tick = _current_tick();
return tick != nullptr;
}
Turret &Turret::getPosition(double &x, double &y, double &z, Unit unit) { Turret &Turret::getPosition(double &x, double &y, double &z, Unit unit) {
// TODO implement if (unit == Unit::MM) {
vec3<double> position;
vec2<long> xy(_current.x, _current.y);
polarToCartesian(_step_ratio, _offset, _current, _zero, xy, position);
x = position.x / 10;
y = position.y / 10;
z = position.z / 10;
}
if (unit == Unit::CM) {
vec3<double> position;
vec2<long> xy(_current.x, _current.y);
polarToCartesian(_step_ratio, _offset, _current, _zero, xy, position);
x = position.x;
y = position.y;
z = position.z;
}
if (unit == Unit::M) {
vec3<double> position;
vec2<long> xy(_current.x, _current.y);
polarToCartesian(_step_ratio, _offset, _current, _zero, xy, position);
x = position.x * 100;
y = position.y * 100;
z = position.z * 100;
}
if (unit == Unit::STEP) {
x = _home.x;
y = _home.y;
}
if (unit == Unit::RAD) {
vec2<double> angle;
stepToRad(_step_ratio, _home, angle);
x = angle.x;
y = angle.y;
}
if (unit == Unit::DEG) {
vec2<double> angle;
stepToRad(_step_ratio, _home, angle);
x = radToDeg(angle.x);
y = radToDeg(angle.y);
}
return *this; return *this;
} }
Turret &Turret::getHome(double &x, double &y, double &z, Unit unit) { Turret &Turret::getHome(double &x, double &y, Unit unit) {
// TODO implement if (unit == Unit::MM) {
vec3<double> position;
polarToCartesian(_step_ratio, _offset, _current, _zero, _home, position);
x = position.x / 10;
y = position.y / 10;
}
if (unit == Unit::CM) {
vec3<double> position;
polarToCartesian(_step_ratio, _offset, _current, _zero, _home, position);
x = position.x;
y = position.y;
}
if (unit == Unit::M) {
vec3<double> position;
polarToCartesian(_step_ratio, _offset, _current, _zero, _home, position);
x = position.x * 100;
y = position.y * 100;
}
if (unit == Unit::STEP) {
x = _home.x;
y = _home.y;
}
if (unit == Unit::RAD) {
vec2<double> angle;
stepToRad(_step_ratio, _home, angle);
x = angle.x;
y = angle.y;
}
if (unit == Unit::DEG) {
vec2<double> angle;
stepToRad(_step_ratio, _home, angle);
x = radToDeg(angle.x);
y = radToDeg(angle.y);
}
return *this; return *this;
} }
Turret &Turret::getZero(double &x, double &y, double &z, Unit unit) { Turret &Turret::getZero(double &x, double &y, Unit unit) {
// TODO implement if ((unit == Unit::MM) || (unit == Unit::CM) || (unit == Unit::MM)) {
x = 0;
y = 0;
}
if (unit == Unit::STEP) {
x = _zero.x;
y = _zero.y;
}
if (unit == Unit::RAD) {
vec2<double> angle;
stepToRad(_step_ratio, _zero, angle);
x = angle.x;
y = angle.y;
}
if (unit == Unit::DEG) {
vec2<double> angle;
stepToRad(_step_ratio, _zero, angle);
x = radToDeg(angle.x);
y = radToDeg(angle.y);
}
return *this; return *this;
} }
Turret &Turret::laserOn() { Turret &Turret::laserOn() {
digitalWrite(_pin_laser, HIGH); digitalWrite(_pin.x.laser, HIGH);
digitalWrite(_pin.y.laser, HIGH);
return *this; return *this;
} }
Turret &Turret::laserOff() { Turret &Turret::laserOff() {
digitalWrite(_pin_laser, LOW); digitalWrite(_pin.x.laser, LOW);
digitalWrite(_pin.y.laser, LOW);
return *this; return *this;
} }

109
turret.h
View file

@ -3,63 +3,102 @@
#include <kissStepper.h> #include <kissStepper.h>
template <typename T> struct vec3 {
T x;
T y;
T z;
vec3() : x(T()), y(T()), z(T()) {}
vec3(T _x, T _y, T _z) : x(_x), y(_y), z(_z) {}
};
template <typename T> struct vec2 {
T x;
T y;
vec2() : x(T()), y(T()) {}
vec2(T _x, T _y) : x(_x), y(_y) {}
};
class Turret { class Turret {
public: public:
enum Unit { MM, CM, M, RAD, DEG, STEP }; enum Unit { MM, CM, M, RAD, DEG, STEP };
Turret(int pin_x_direction, int pin_x_pulse, int pin_x_enable, int pin_x_home, using StepRatio = vec2<double>;
int pin_y_direction, int pin_y_pulse, int pin_y_enable, int pin_y_home, using Offset = vec3<double>;
int pin_laser); // x -> turret to screen
// y -> laser to stand
// z -> unused
using ZeroOffset = vec2<long>;
struct PinMap {
int home;
int direction;
int pulse;
int enable;
int laser;
};
Turret(StepRatio step_ratio, Offset offset, ZeroOffset zero_offset,
PinMap pin_map_x, PinMap pin_map_y);
~Turret();
Turret &init(); Turret &init();
Turret &gotoHome(); Turret &gotoHome(bool blocking = false);
Turret &gotoZero(); Turret &gotoZero(bool blocking = false);
Turret &moveTo(double x, double y, double z, Unit unit = Turret::Unit::CM); Turret &moveTo(double x, double y, double z, Unit unit = Turret::Unit::CM, bool blocking = false);
Turret &moveBy(double x, double y, double z, Unit unit = Turret::Unit::CM); Turret &moveBy(double x, double y, double z, Unit unit = Turret::Unit::CM, bool blocking = false);
Turret &moveToX(double x, Unit unit = Turret::Unit::CM); Turret &moveToX(double x, Unit unit = Turret::Unit::CM, bool blocking = false);
Turret &moveToY(double y, Unit unit = Turret::Unit::CM); Turret &moveToY(double y, Unit unit = Turret::Unit::CM, bool blocking = false);
Turret &moveToZ(double z, Unit unit = Turret::Unit::CM); Turret &moveToZ(double z, Unit unit = Turret::Unit::CM, bool blocking = false);
Turret &moveByX(double x, Unit unit = Turret::Unit::CM); Turret &moveByX(double x, Unit unit = Turret::Unit::CM, bool blocking = false);
Turret &moveByY(double y, Unit unit = Turret::Unit::CM); Turret &moveByY(double y, Unit unit = Turret::Unit::CM, bool blocking = false);
Turret &moveByZ(double z, Unit unit = Turret::Unit::CM); Turret &moveByZ(double z, Unit unit = Turret::Unit::CM, bool blocking = false);
Turret &getPosition(double &x, double &y, double &z, Unit unit); Turret &getPosition(double &x, double &y, double &z, Unit unit);
Turret &getHome(double &x, double &y, double &z, Unit unit); Turret &getHome(double &x, double &y, Unit unit);
Turret &getZero(double &x, double &y, double &z, Unit unit); Turret &getZero(double &x, double &y, Unit unit);
Turret &calibrate(); Turret &calibrate(bool blocking = false);
Turret &laserOn(); Turret &laserOn();
Turret &laserOff(); Turret &laserOff();
Turret &nextTick();
Turret &flushTick();
bool hasTick();
private: private:
kissStepper _stepperX; vec2<kissStepper> _stepper;
kissStepper _stepperY; vec2<long> _home;
vec2<long> _zero;
vec3<long> _current;
vec2<PinMap> _pin;
StepRatio _step_ratio;
Offset _offset;
ZeroOffset _zero_offset;
int _homeX; // tick queue related
int _homeY; static constexpr size_t TICK_QUEUE_LENGTH = 32;
using TickHandler = bool (Turret::*)();
int _zeroX; TickHandler _tick_queue[TICK_QUEUE_LENGTH];
int _zeroY; size_t _tick_queue_head = 0;
size_t _tick_queue_tail = 0;
int _currentX; bool _enqueue_tick(TickHandler fn);
int _currentY; bool _dequeue_tick();
int _currentZ; TickHandler _current_tick();
int _pin_x_direction; bool (Turret::*_next_tick)() = nullptr;
int _pin_x_pulse;
int _pin_x_enable;
int _pin_y_direction; // tick handlers
int _pin_y_pulse; bool _goto_zero_tick();
int _pin_y_enable; bool _goto_home_tick();
int _pin_x_home;
int _pin_y_home;
int _pin_laser;
}; };
#endif #endif

View file

@ -1,17 +1,34 @@
#include "config.h" #include "config.h"
#include "turret.h" #include "turret.h"
Turret turret(PIN_X_DIRECTION, PIN_X_PULSE, PIN_X_ENABLE, PIN_X_HOME, Turret::PinMap pinX = {
PIN_Y_DIRECTION, PIN_Y_PULSE, PIN_Y_ENABLE, PIN_Y_HOME, .home = PIN_X_HOME,
PIN_LASER); .direction = PIN_X_DIRECTION,
.pulse = PIN_X_PULSE,
.enable = PIN_X_ENABLE,
.laser = PIN_LASER,
};
Turret::PinMap pinY = {
.home = PIN_Y_HOME,
.direction = PIN_Y_DIRECTION,
.pulse = PIN_Y_PULSE,
.enable = PIN_Y_ENABLE,
.laser = PIN_LASER,
};
Turret::StepRatio stepRatio(STEP_RATIO_X, STEP_RATIO_Y);
Turret::Offset offset(OFFSET_X, OFFSET_Y, OFFSET_Z);
Turret::ZeroOffset zeroOffset(ZERO_OFFSET_X, ZERO_OFFSET_Y);
Turret turret(stepRatio, offset, zeroOffset, pinX, pinY);
void setup() { void setup() {
turret.init(); turret.init();
Serial.begin(BAUDRATE); Serial.begin(BAUDRATE);
turret.laserOn().calibrate(); turret.laserOn().calibrate().moveTo(0, 0, 0);
turret.moveTo(0, 0, 0);
delay(5000); delay(5000);
// test pointage // test pointage
@ -20,74 +37,22 @@ void setup() {
int panelHCount = 3; int panelHCount = 3;
int panelVCount = 2; int panelVCount = 2;
// double zeroOffsetV = -31.5; double zeroOffsetV = -21;
double zeroOffsetV = -20.8; double zeroOffsetH = -163;
// double zeroOffsetH = -184.5; // double zeroOffsetH = -147;
double zeroOffsetH = -195.5;
// Test constant step h,v // Test constant step h,v
Serial.println("Start demo_0"); for (double step = 0; step < 160; step += 10) {
for (int i = 0; i < 20; i++) { Serial.print("[step]: ");
Serial.print("> "); Serial.println(step);
Serial.println(i); turret.moveTo(step, 0, 0);
for (double step = -198.5; step < 176.0; step += 10) {
Serial.print("[step]: ");
Serial.println(step);
turret.moveTo(step, 87, 0);
// turret.moveBy(20.0, 0.0, 0.0);
delay(500);
}
for (double step = 0; step < 200.0; step += 10) {
Serial.print("[step]: ");
Serial.println(step);
turret.moveTo(0, step, 0);
// turret.moveBy(20.0, 0.0, 0.0);
delay(500);
}
delay(5000);
turret.moveTo(0, 0, 0);
delay(5000); delay(5000);
} }
for (double step = 0; step > -160; step -= 10) {
// Test rollX Serial.print("[step]: ");
turret.moveTo(0 * panelWidth + zeroOffsetH, 0, 0); Serial.println(step);
delay(5000); turret.moveTo(step, 0, 0);
turret.moveTo((panelHCount * panelWidth) / 2 + zeroOffsetH, 0, 0); delay(5000);
delay(5000);
turret.moveTo(panelHCount * panelWidth + zeroOffsetH, 0, 0);
delay(5000);
turret.gotoZero();
// Test rollY
turret.moveTo(0, 0 * panelHeight + zeroOffsetV, 0);
delay(5000);
turret.moveTo(0, (panelVCount * panelHeight) / 2 + zeroOffsetV, 0);
delay(5000);
turret.moveTo(0, panelVCount * panelHeight + zeroOffsetV, 0);
delay(5000);
turret.gotoZero();
// Test align to panels
for (double panelH = 0; panelH < panelHCount + 1; panelH += 0.5) {
for (double panelV = 0; panelV < panelVCount + 1; panelV += 0.5) {
double x = panelH * panelWidth + zeroOffsetH;
double y = panelV * panelHeight + zeroOffsetV;
double z = 0;
Serial.print("Goto (x, y, z) => (");
Serial.print(x);
Serial.print(", ");
Serial.print(y);
Serial.print(", ");
Serial.print(z);
Serial.println(")");
turret.moveTo(x, y, z);
delay(2000);
}
} }
turret.gotoZero(); turret.gotoZero();